Final Exam Review Fall 2014
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Draw the subgroup diagram for Zig.

List the elements in the cyclic subgroup generated by (168)(235) in Ss.

For any a,b in a group and any n € Z, show that (a~'ba)" = a~1b"a.

Let G be a group with the property that Vz,y, 2z € G, zy = zz implies y = z. Prove that G is abelian.

Let S be the set of polynomials with real coefficients. Define f ~ g for f,g € S if f' = ¢’ (that is, their
derivatives are equal). Show that ~ defines an equivalence relation on S. Describe the equivalence
class of f.

If a,b are group elements with |a| = 6 and |[b| = 7, express (a’c™2b*)~! without using negative
exponents.

If H and K are subgroups of a group G, show that H N K < G.
In Zay, find a generator for (21)N(10). Suppose |a| = 24 in a group G. Find a generator for (a?!)N(a'?).

Suppose G is a cyclic group with exactly 3 subgroups: G itself, {e}, and a subgroup of order 7. What
can you say about |G|?

Write o = (13256)(23)(46512) as (a) a product of disjoint cycles; (b) a product of transpositions. (c)
Is 0 € Ag?

Let B8 = (123)(145). Write 3% in disjoint cycle form.

Let H={8€S5| /(1) =1and 5(3) = 3}. Prove H < S5. How many elements are in H?

Let ¢ : G — G be a group automorphism. Prove H = {x € G | ¢(z) = x} is a subgroup of G.

Let |a| = 30. How many left cosets of (a*) are there in {a)?

List the elements of the factor group Zas/(8). What is the order of the element 14 + (8) in this group?

Let G = Z4 x Z4, H = {(0,0), (2,0),(0,2),(2,2)} and K = ((1,2)). Classify G/H and G/K according
to the Fundamental Theorem of finitely generated Groups.

Prove (A x B)/(A x {e}) ~ B.

If ¢ is a homomorphism from Zszy onto a group of order 5, determine the kernel of ¢.

Give an example of a subset of a ring that is a subgroup under addition, but is not a subring.
The ring {0, 2,4, 6,8} under multiplication modulo 10 has unity. Find it. Show this ring is a field.
List all zero divisors in Zog.

Find all zeros of 2% 4+ 2z + 2 in Z7.

Let R be a ring, and let a be a fixed element of R. Let I, = {z € R | az = 0}. Show that I, is a
subring of R.

Is 223 4+ 22 + 2z + 2 an irreducible polynomial in Zs[z]? Why or why not? Express it as a product of
irreducible polynomials in Zs[z].

Determine if the polynomial 420 — 92* + 242 — 18 is irreducible over Q.



